Search results for "Boolean functions"
showing 4 items of 4 documents
Datorzinātne un informācijas tehnoloģijas: Datu bāzes un informācijas sistēmas: doktorantu konsorcijs. Sestā Starptautiskā Baltijas konference Baltic…
2004
The Baltic Conference on Databases and Information Systems is a biannual international forum for technical discussion among researchers and developers of database and information systems. The objective of the conference is to bring together researchers as well as practitioners and PhD students in the field of computing research that will improve the construction of future information systems. On the other hand, the conference is giving opportunities to developers, users and researchers of advanced IS technologies to present their work and to exchange their ideas and at the same time providing a feedback to database community.
BMaD – A Boolean Matrix Decomposition Framework
2014
Boolean matrix decomposition is a method to obtain a compressed representation of a matrix with Boolean entries. We present a modular framework that unifies several Boolean matrix decomposition algorithms, and provide methods to evaluate their performance. The main advantages of the framework are its modular approach and hence the flexible combination of the steps of a Boolean matrix decomposition and the capability of handling missing values. The framework is licensed under the GPLv3 and can be downloaded freely at http://projects.informatik.uni-mainz.de/bmad.
Quantum Query Complexity of Boolean Functions with Small On-Sets
2008
The main objective of this paper is to show that the quantum query complexity Q(f) of an N-bit Boolean function f is bounded by a function of a simple and natural parameter, i.e., M = |{x|f(x) = 1}| or the size of f's on-set. We prove that: (i) For $poly(N)\le M\le 2^{N^d}$ for some constant 0 < d < 1, the upper bound of Q(f) is $O(\sqrt{N\log M / \log N})$. This bound is tight, namely there is a Boolean function f such that $Q(f) = \Omega(\sqrt{N\log M / \log N})$. (ii) For the same range of M, the (also tight) lower bound of Q(f) is $\Omega(\sqrt{N})$. (iii) The average value of Q(f) is bounded from above and below by $Q(f) = O(\log M +\sqrt{N})$ and $Q(f) = \Omega (\log M/\log N+ \sqrt{N…
Generalized person-by-person optimization in team problems with binary decisions
2008
In this paper, we extend the notion of person by person optimization to binary decision spaces. The novelty of our approach is the adaptation to a dynamic team context of notions borrowed from the pseudo-boolean optimization field as completely local-global or unimodal functions and sub- modularity. We also generalize the concept of pbp optimization to the case where the decision makers (DMs) make decisions sequentially in groups of m, we call it mbm optimization. The main contribution are certain sufficient conditions, verifiable in polynomial time, under which a pbp or an mbm optimization algorithm leads to the team-optimum. We also show that there exists a subclass of sub-modular team pr…